Towards an Optimal Parametrization of a Transferable Tight-Binding Model for Carbon-Hydrogen Compounds

نویسندگان

  • Nicola Manini
  • Giovanni Onida
  • Costantino Agnesi
چکیده

We develop a method and a computer code for the systematic optimization of a transferable tight-binding model for carbon-hydrogen compounds. We take as reference a density-functional theory calculation in the local density approximation and, using a «downhill simplex» routine, we minimize the squared difference between the energies predicted by the reference model and those obtained with our tight-binding approach. With the resulting best-fit parameters our tight-binding model improves significantly its accuracy and predictiveness for the calculation of the total adiabatic potential energy and the band structure of arbitrary carbon-hydrogen compounds. Additionally, a serious unphysical behavior exhibited by the original parametrization has been corrected. Advisor: Prof. Nicola Manini Co-Advisor: Prof. Giovanni Onida

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic band structure of a Carbon nanotube superlattice

By employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (CNT) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. Exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. The calculations are base...

متن کامل

Electronic band structure of a Carbon nanotube superlattice

By employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (CNT) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. Exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. The calculations are base...

متن کامل

SCC-DFTB Parametrization for Boron and Boranes.

We present the results of our recent parametrization of the boron-boron and boron-hydrogen interactions for the self-consistent charge density-functional-based tight-binding (SCC-DFTB) method. To evaluate the performance, we compare SCC-DFTB to full density functional theory (DFT) and wave-function-based semiempirical methods (AM1 and MNDO). Since the advantages of SCC-DFTB emerge especially fo...

متن کامل

The Control Parametrization Enhancing Technique for Multi-Objective Optimal Control of HIV Dynamic

In this paper‎, ‎a computational approach is adopted for solving a multi-objective optimal control problem (MOOCP) formulation of optimal drug scheduling in human immunodeficiency (HIV) virus infected by individuals‎. ‎The MOOCP‎, ‎which uses a mathematical model of HIV infection‎, ‎has some incompatible objectives‎. ‎The objectives are maximizing the survival time of patients‎, ‎the level of D...

متن کامل

Tight- binding study of electronic band structure of anisotropic honeycomb lattice

 The two-dimensional structure of graphene, consisting of an isotropic hexagonal lattice of carbon atoms, shows fascinating electronic properties, such as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. Anisotropy can be induced in this structure by electrochemical pressure. In this article, by using tight-binding method, we review anisotropy effects in the elect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013